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I. INTRODUCTION

What is the nature of science? This question is very important
and in the past many attempts have been made to answer it in a short bériod
of time and space. We deny the possibility of such a condensation. On the
other hand. we believe that by practicing science the student will acquire
a "feeling for the nature of science''. Thus, our goal in writing this
unit is to permit the student to engage in scientific investigation at
different levels which will enablé him to develop thisiéééling. Each section
of the unit is self contained and may be used independently of the others
depending on the needs and development of the’students. It is hoped that the
materiéi will give the student. a wealthuéf experience upon which hisAlater,
work in science can be based. The discussion of science from a historical
or philosophical stanépoint is viewed as an extension to the primarv material
of this unit.

in keeﬁing with the pgilosophy of using the inductive or 'self
discovery' method the experiments are designed to get the student involved
in scientific inveétigation by uéing akséientific method. The student begins
by using his everyday experiences td.make.his own observations,_gather his
own data and develop his own scientific method. The experiments movebfrom
familiar intuitive type problems requiring little or no use of measuring de-
vices to the more abstract typically "scientific” nrohiem:whegef;eaqurement
and analysis of numerical data is a crucial part of the exveriment.

Science should not be merely talked ahout. 7Tt involves a type of

13.




thought which must be experienced to be understood. Richard P. Feynman,
one of the most prominent 20th Centurv physicists, has emphasized the emotion-
al side of science.

The 'same thrill, the same awe and mystery, come again and again
when we look at any problem deeply enough. With more knowledge
comes deeper, more wonderful mystery, luring one on to penetrate
deeper still. Never concerned that the answer may prove disappoint-
ing. but with pleasure and confidence we turn over each new stone

to find unimagined strangeness leading on to more wonderful
questions and mysteries - certainly a grand adventure.

To a scientist, then, science is both a ''dreaming'' and a 'doing™,
it 1s creative endeavor, whose successfﬁl pursual cannot he assured bv
methodically following a fixed sequence of steps like baking a cake according
to a faithful recipe. Contrary to popular notion, there is no single ‘method"
that leads scientists unerringly to their discoveries. Although there are
similar features that characterize what scientists do, scientific methods,
as such, are as numerous as there are scientists. This notion is admirably

e expressed by Percy W. Bridgeman. lle states:

It seems to me that there is a good deal of ballyhoo about

scientific method. I venture to think that the people who

talk most about it are the people who do least about it.

Scientific method is what working scientists do, not what

other people or even themselves may say about it. No working

scientist, when he plans an experiment in the lahoratory, asks

himself whether he is being properly scientific, nor is he
interested in whatever method he may use as method...

In order to put across this notion of science we feel tﬁat the student must
actually experience science. Consequently, all laboratory and classroom
work 1in this unit has been designed to reflect a complete scientific pnrocess.
Every attempt has been made to avoid materials which involve only one part of

the process at a time (e.g., observation, classification, etc.). An exercise

Q - -”‘111




stressing merely observation alqne isbpot "doing' science, but is merely |
talking about it.

The titles of the remaining sections of this unit are listed in
the flow chart on page 4. As the titles imply, there is a natural hierarchal
development as we go from the non-~abstract to the abstract. But order is »
not immutable; nor is it necessary that each section of this unit be covered,
if the unit is fo be used successfully. Each section isrdesiéned to be
reasonably self contained so the end of that section may be used as an exiting
point from thisﬁstudy of the Nature of Science. Mc eover, to facilitate flex~
ible use, eachiéection has been written to conform as closely as possible to

a sinele format given below.

SECTION STRUCTURE (NON-ABSTRACT LAB. ETC.)

A.  Summary of the essential ideas contained in the sub-unit.
B. Examples of an Approach. This section describes a typical
classroom experience which has had some success in the past.
C. Alternative Activities. A 1list of alternative laboratory work,
discussion questions, or homework questions.
D. Suggested readings and other teaching aids where applicable.
The unit on the Nature of Science has been designed primarily to
be used as an introductory part of the course; however, it does not have to
be used for this purpose. It would be equally appropriate to end the course
with so;e of the more sophisticated sections contained in this unit. The

students would then get a chance to think ‘about jusf what they have really

learned during the semester.
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A. SYNOPSIS

|

|

|

IT. ASSESSMENT OF FAMILIAR PROBLEMS
.

We begin our stu&y of the nature of science at the simplest level,
namely, by analyzing some of the popular scientific notions of phenoména
that are familiar to everyone. There are many scientific notions 1in our
culture today which are so widely believed that they are accepted as being
intuitively obvious. All of you have a considerable exposure to
these notions. 1In effect, you will be thinking in a "scientific fashion"
about ideas already very familiar to you.

The study is limited to a discussion format, the business of
gathering data w&ll be dgferred until later since we are limiting ourselves‘
to dealing with those thfngs “commonly known'' and anal&zing what we know

and how we know it. This gives‘us an opportunity to study‘the process of

going from 'observing" to "knowing" in a familiar context.

B, EXAMPLE APPROACH

The following gives a possible teacher-student dialogue concerning

a very familiar experie-ce. )

T: There have been two conflicting ideas about what causes day and night:
1) The earth revolves on its axis.
i1) The sun revolves about the stationary earth.
Which is correct?

S: The first theory is‘obviohsly correct!

17




T: Have you ever seen the earth revolving?

S: No! I guess not.

T: But you have seen the sun going from one side of the sky to the other.
So isn't it obvious that the second theory is correctf

S: Yes! That seems correct, but I know that it isn't correct.

T: How do you know then! Prove to me that the earth revolves in space,

S: 1I've thought of a lot of things and I can't seem to do it.

T: Well, is it_possiblé that the first theory could be correct?

S: Yes. I can see that the sun would look like it traveledAfroq east to
west if the earth does revolve (like I know it does). I can picture
in my mind sunlight falling on the earth, the earth rotating, and so on.

T: But you can also_see how the second theory is co?rect. How, now can

~you decide which one-is correct. Fortunately, in this class, you won't
be burne@ at the stake for chodsing to argue for the first theory.

S: Well, lets see:! I could go into outer épace and see. Today, in our
modern age, I could actuall& see 1f the earth is rotating.

T: True. But in order to decide this question you must make sure your
spaceship is stationary in space. TFor example, if your spaceship 1is in
orbit about the earth, the earth would look like it was rotating even
if it wasn't,

This particular question is a difficult one to resolve, mainly
because we do not have direct andveasy access to>measurements of.the'system

under discussion. There is no simple experiment one ban perfofm to settle

the issue. Theoretically one could - as stated above - man a spaceship to




pd

take him sufficiently far from the earth that he could make a direct visuai
inspeétion. But that experiment alone would not be sufficient, for he would
have to make assurances about his.own motion before being able to draw a
conclusion abo;t the motion ef'thé earth.

The problem is not insolvable, however, and man did come to a
conclusion that the earth was moving long before he had such expensive and
powerful tools as spaceships{ As 1t 1is well known, observations of the
relative motion of the heavenly bodies coupled with the laws of physics
settled the problem. Accounts may be found in several sources (See
references 2 and 3). However, at this point, we are less concerned about
"the correct" solution to this problem than we are about the criterion by
which we chose one theory over‘anothér. The accounts cited provide good
examples of the analytical process for reaching a decision. Before yd&
study one of these articles make a comparison of the two modeis on the basis
of the facts you already know. '
Quauo ns

1. List all the evidence that you can think of that supports
the idea that the earth is rotating. List all of the

evidence that contradicts that notion.

2, Weigh the two sets of evidence and on their basis alone
reach your own conclusion about the motion of the earth.

3. Discuss the validity (or reasonableness) of these statements:

(a) If the earth were rotating everyone would fall off.

(b) The fact that oceans have tides is evidence of the
rotation of the earth. As the earth rotates, the
water ''sloshes'" around causing tides.




(¢) If the earth were rotating, we would feel the push
of the atmospheric wind as a result. The wind would
be strongest at the.-equator than at the poles because
points on the equator would be moving faster. BRut
as this does not happen we must conclude, the earth
is at rest.

(d) If the earth were rotating it would be slowed down by
the friction with the atmosphere and, hence, slow down
eventually. Since the earth is several million years
old it could not still be rotating and must have
stopped by now even if it were rotating at first.

(e) The earth is rotating, but so slowly that no instrument
made on earth can detect it. "

(f) Some evidence is more conclusive than others.

() 1If the most emnminent scientist in the would says that
the earth is rotating, then it must be so.

(h) If the most emminent scientist in the world says
the earth is rotating, it is still only hearsay.

(1) Every man must determine for himself what 1is’true.

(1) Since the majority rules, we can all vote on the issue
of whether the earth is moving to decide the truth of
it. N -,

Outline the steps you used in coming to a decision so that
the next time you face such a question you will have a
procedure to follow to resolve it. ‘

Study one of the references cited that contains an account
of the resolution of the question of whether the earth is
at rest or not. Compare the steps in your decision-making
process to theirs. '

What 1s scientific evidence?

How is scientific evidence used proving facts?

%
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C. SUGGESTIONS FOR OTHER PROBLEMS

Using the methods and criteria developed in the precedipg section,
analyze the validity of the following statement.

1. The earth is a sphere floating in space.

2. The earth is flat,

3. The moon produces light of its own like the sun.

4. Moonlight is sunlight reflectéd of f thé moon.

5. Blacks are genetically inferior'tb whites.

6. Frog urine causes warts. -

7. Your personality is determined by the month in which you
are born, .

8. Cigarettes cause cancer.
9. There is 1life after death.
10. Man evolved from the ape.

11, There are people with extra-sensory perception,
D. REFERENCES

1. "Modern Science and Human Values" by Everett W. Hall.
This presents a very clear discussion of early astronomical
ideas.

2. "The Sleepwalkers' by Arthur Koestler. This book contains
an exciting account of the discoveries on which classical
physics 1is based, as well as a privileged view of Koestler's
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reconstruction of the personalities of some of the great
scientists and the process of creation.

3. "Astronomy" by E. G. Ebbighauser, second edition, chapters |
1 and 2. Published by the C., E. Merrill Co., Columbus, Ohio.
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III. THE SCIENTIFIC METHOD - A COMPARATIVE STUDY

A. SYNOPSIS

This section is designed to assist the teacher in involving students
in a variety of several separate sclentific activities and then making a
comparative study of these experiences at their conclusion. Each experiment
has a different theme and approach; yet, each contains the elements of the
entire scientific process. A comparison of the structures of these varied
investigations will emphasize the general factors common to all sclentific

studies.
B. EXAMPLE ACTIVITIES

A description of each of the experiments is listed below. In the
main they are written as teacher guldeg, although some have large sections
of instructions for the student bordered from the rest of thé section. These
instructions taken as a whole from each section can be reproduced as laboratory
directions for the stud;nts.

Assign studenfs to work in small groups on the experiments. Several
groups may work on the same experiment simultaneously.

When each group has completed its individual experiments or gotten
sufficientiy near a completion point that they have drawn some conclusions,
it is asked to make a repoft of their findings. The essential informatioq
of the reports are to be written on the board to be evaluated by tﬁe class.

With the teacher acting as research co-ordinator the following kinds of
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| questions should be posed:
(a) How are the studies alike? That is:
(1) What was the first thing done in each case?
(ii) What was done as the last step in each experiment?

v

(b) When predictions were made, how were you able to determine
whether they were correct or incorrect?

(c) Dbid your imagination play any part in vour nredictions or
your observationsg?
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1. Rock Studies
Material: None required
Data Coflection

Preparation for this investigation bepins before the regular class
meeting. The assignment is simple. Students are to choose convenient areas
around the campus, from which to gather a collection of small rocks and
pebbles. At least ten samples from each area should be considered a
miniﬁuﬁ sample grouping. Fach study group should sample at least fhree
different areas.
Data Analysis

In the 1abofatory. examine the rocks carefully, notins and_recérding-
as manv distinct properties of each rock as you need to identify it.
Create categories to assist you in classifying your collection. For example,
you might consider: color, texture, shane, size. and hardness; Do not limit
yourself to only these properties but use others as well. Once a‘nropertv is
chosen, you should also be sure that you have some way of measurins it ohject-
ively so that if someone else classifié& it according to the same provperty he
would reach the same conclusion as vyou.

After a complete description of each rock has heen recorded, search

for patterns in your data.

(3) Invent a rock classification scheme using the pronerties listed
above as well as others you mav think of.

(b) Do rocks of a given type have a variety of sizes or do they seem
to occur in one natural size? ‘ v

(c) If there is a variety of sizes within a rock tvnre, what are
the size variations?
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(d) How do size variations differ from one rock type to another
type?

(e) 1Is there a pattern in the grounines in which different rock
types are naturally found, i.e., do certain kinds of rocks
seem to be found onlvy near other kinds of rocks?

'(f) Is there a relation between different properties, e.g., do
larger rocks have a higher degree of hardness?.

Questions similar to those ao

on
) <O




(d) How do size variations differ from one rock type to another
type?

(e) 1Is there a pattern in the groupings in which different rock
types are naturally found, i.e., do certain kinds of rocks

seem to be found only near other kinds of rocks?

(f) Is there a relation between different pfoperties, e.g., do
larger rocks have a higher degree of hardness?

Questions similar to those above may also be posed for the other properties.
Do not “imit’yourself to 'using these questions only; they are meant to serve
as a guide.
Application of Analysis
Using the above pattern of analysis, try to use your observations
as evidence of some larger class of phenomena. That is, try to use your data
to learn if there are some fuﬁdamental things that a study as simple as rock
collecting can disclose. For those who are faint hearted in this part of the
study, imagine what fantastic conclusions someone like the fictional detective
Sherlock Holmes or Charlie Chan could draw from the thinest shreds of evidence.
Thus use your data and try to answer such questions as:
(a) How might you explain relations between properties? For
example, assume that it is found that the harder the rock, v
the larger its size in natural form; how would you explain this
feature? Or suppose some students at Clark College in Atlanta
found that all rocks have a reddish cast, even after prolonged
washing, what might this suggest about the formation cof the
rocks in this red clay area of Georgia?
(b) What do the patterns of>textures of different hardness of
rocks or the patterns of sizes of rocks tell you about the

weather of the area in which the rocks are found?

(c) What do the Batterns (or lack of pattérns) in the grouping of
types of rocks tell about the evolution of the area?

Again, these questions are only guidus; create as many others as you can to make

full use of your findings.

ot
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2. The Inaccessible Die
Materials: There are no measuring devices-needed in this study. It is
necessary only to supply each study group with an "Inaccessible
Die" system which is described in detail in the figure 2 below.
Abs thact o -7
,The inaccessible die study 1is represen;ative of studies og a pumber“, ‘
of phenomena in natare where the object under investigation may be probé& ;;i;w o
indirectly. No one has ever visually observed an atom; yet we infer its
properties by its response to Qhr probés. This experiment is designed  to

%

have students study a system by deliberately restricted means. They will not
be ablé to hold it in their hands for 'direct observation”.A’fet, they will

be abie to construct a model of the object thay are studying with prohablistic
assurance that the model is correct.

Procedune

e

Each study group will be given a die enclosed in a box to study. As
is indicated in figure 2, one has only a partiél view of two adjacent faces
of the die at one time. The faces of the dies in the boxes wiil be marked
sd that they are either black or white with the number of sides marked black
varying from group to group. It is the purpose of the study to construct a 1
model of the die using sightings of the sides that show through the obhservation
window. By shaking the die, a new face may be made to show.

a. Minimum Evidence for a Model:

The study of the die is begun by closing one viewing winddw of the
die case so that only one side at a time may be seen. Have the students

observe the die.

o -~ tog
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. L
cardboard die enclosure case

observation windows .
were Fig., 2

INACCESSIBLE DIE SYSTEM -

This system is composed of two elements, a die and simple cubic
enclosare case asxpictured above. The enclosure cube should have dides at
least twice that of the die so that the die has room to rotate once placed

" in the case. The observation windows are.squares with sides one-half that
of one of the die faces. They may be as simple as holes covereé by trané—
parent sheets of plastic. A”regular die may be used with each face covered

with identical opague squares of cardboard marked to suit our purposes.

Onee the die is marked and placed in the case, the case should be sealed.




then follow the instructions below.

Proceed to collect data constructing a model of what the die within the
case looks like if all six sides could be seen simultaneously. Shake the
case vigorously and record whether a black or white side is showing.
Repeat procedure until there is data from three sightings then try to
construct a model noting success or failure and reasons for either. If
more data is required repeat procedure until enough data is taken and

explain why the number of sightings chosen were necessary.

Asking the students to draw a model after only three sightings when he
‘v“obViousiy dbéé not hévéiéaohgﬁudata, foréeé Him to cdnSid;Q:hoﬁ many distinct:ib
faces he has seen. This is an appropriate point to interject the idea of the

random arrangem;nt of the dice as the case is shaken. He knows he has not
seen-every side after three sightings and maybe even then he has not seen
three distinct sides. Even after twenty five throws he cannot be certain that

there is a side that he has not seen. Every student has some intuitive feel

for dealing with probability and knows about the long shot.

Students should be encouraged to discuss the probablistic application
of their data within'their research groups. Teacher guidance at this juncture

will be important.

Each study group will generate a model of their die system at the

s

conclusion of' this phase of the study.ﬁ’Using the representation shown in

figure 3, we have illustrated representative example of models that three

different groups might construct along with the supportive data in figure 4,

31
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Side 6
Side 1

Side 4 Side 5 | side 2

Side 3

‘ Fig. 3
To show a model of the three dimensional cube in two dimensions so

that all six sides can be viewed at once, we use the representation shown

above.
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After a group has reached the stage of constructiné a model

similar to one of those shown in figure 4 from their data, the students should
be asked to compare their.model with other possible models generated by groups

with similar statistical trends in their data.

Teachens Notes on the Straucture of The Investigation

a. Collect the data - generate a model and scheme to describe
the model. (How do you describe a 3 dimensional model on a
1 dimensional piece of paper?).

b. Raise question of equivalent models and how to distinguish
between them. For example, below we show two equivalent
models that could be generated using data obtained viewinso
one side at a time.

Figure 5

33
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WP

by

. €. Expose two sides of object at the same time. Raise the

question, ''Can you distinguish between the two models

shown above by viewing two sides simultaneously?" With

a little thought it bewmes clear that if two adjacent

sides of the first model of the die shown above is viewed,

one would see the following pairs of sides: black-black,

black-white, and white-white. While if the second die

shown above were the die in the box, black-white and

white-white sides would show simultaneously but not a

black-black combination. Thus, one could use the additional
" information obtdined when ¥{eWing two sides simultaneodsly '~

to distinguish between these two possible models of the

die within the box.

d. As an extension, introduce the problem where the data
obtained on viewing a die one side at a time show that
the number of times that a black side appeared indicating.,
the the die contained in the box had an equal number of hlack
and white sides.. In this case how dees one distinguish
between the two models below both of which satisfy the data
obtained on viewing one side at a time?

Model 1 Model II

In this case both models would display black-black, black-
white, as well as white-white sides simultaneously. The question
is raised then, "How may one use simultaneous sightings of
adjacent sides to determine which model correcily represents the
die in the box?"

A little thought shows that although the same combinatic -f
-colors appear when viewing adjacent sides of both dies, the '
frequency with which they appear will not be the same. This 1is
just a more complicated version of the same problem encountered

when one views only one side aa time; eith a white side or a

34
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black side was seen in either case but the frequency with which the
white side showed as compared to the frequency with which the

black side appeared allowed us to predict how many black sides and
white sides the die in the box has.

Model I

Model IX :

In the figure above we indicate all the combinations of
adjacent sides that can be viewed simultaneously and listed
in the frequency with which they will appear on a statistical
basis 1f two sides are viewed randomly.

Thus one can decide what model more accurately describes the
die in the box by measuring the ratio of the frequency with
which each of the combination .of colors appear. )

e. Viewing two sides of the die simultaneously, make twenty
sightings and record the combination of colors that appear.
Compute the ratio of the number of times the different possible

-color combinations are seen to occur and compare these results
to the predictions above.

39
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C. Exteqsions
1. Suppose in viewing one side of a die at a time concealed in a B
box your data showed that:

a. Only two color faces showed, a white face or a black face
b. The white face showed twice as often as black

Using this data alone it is pogsible that the object in the box

e e e e mesc b ar gl sided - die with two black sides and four:whkite sldes or:
it could be a eight sided object as shown in the figure below
that rotates on its base when shaken only showing six of its
eight sides.

Show how you could use the information gained by viewing two
adjacent sides at a time to distinguish between these two -
possibilities of correct models for the object in the box.

when shaken object rotates
when shaken object freely showing any two adjacent
rotates freely showing sides except top or bottom
any two adjacent sides

{r;‘.“"_ {
| P

.

Figure 6
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2. The study of the inaccessible die is like the study of the solar

system or the nucleus of atoms; they are not directly accessible. We cannot

touch them but we have collected fragments of information about them. Taken

as a whole those that information provides us with a ''picture” of these

systems.

' Compare the quality of knowledge about these systems, answering

the Questions:
(a)
(b)

(c)

(d)

Are you absolutely sure about your model of the die?

Are scientists absolutely sure about their model of the
moon?

After a hundred sights of adjacent sides of the die which
only showed white and black faces, is it possible that the
die had one red side that had never shown? Would it

be "probable''?- o

From all evidence so far the lunar sampling shows that
there is no life on the moon. However, is it still
possible there is life on the moon? 1Is it probable?

wnc

RRTL T
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IV.SCIENTIFIC KNOWLEDGE

A. SYNOPSIS

“The examples of scientific problems we have encountered so far have

been chosen to illustrate the most elementarv science problems, devoid of
. romplevities.., Ae:wenmeyevclosenm&ewanéewéfeblemc that -are.morz clearlv
representative of those chac occupy modern scientists, the underlying features
that give science a quality of abstraction becomes more pronounced. First, it
is the nature of science to deal with an “"indirect” knowledge of things if by
direct knowledge one means experiencing only with the nrimafﬁ-five human senses.
Scientists use measuring instruments as extended forms of quantitatively precise
senses. The world of reality is sensed through them and described in terms of
their measures. Any scientific knowledge can always by reduced to inferences
from the results of an experiment. This does not exclude the "experiments' of
seeing. smelling, and touching performed with the "instruments" of the eve,
nose, and fingers. Thesebtoo we include; they simply are not instruments that
give reproducible quantitative results and are used to assess data qualitatively.

As an extreme‘illustrative exampie of a problem where we seek ansﬁers
in terms of indirect knowledge, the mysterious black box problem described

below 1s offered. It provides ampie grist for the consideration of the question

of the nature of scientific knowledge.
B. THE MYSTERIOUS BLACK BOX

The apparatus of this experiment consists of a sealed box (old cigar

38




box will do), several input jacks, two of which are internally connected to a
battery, several switches, and a light bulb. The diagram below 1llustrates

an example, The sealed box is then presented to the students to determine

what is inside.
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CIRCUIT DIAGRAM FOR BLACK BOX

T

L - -2 L %y

A B C

- r—

1 2 3 N
Fig. 8

1) The switches A and B are single pole, double throw (SPDT) switches, C
should match them in external appearance but otherwise does not matter.

2) The lamp can be plugged into any combination of output jacks 1, 2, 3,
or 4, -

3) The light will light 6n1y when plugged into jacks 1 and 2, and when
switeh A and B are both up or both down. .

4) Switch C, and jacks 3 and 4 do not respond in any'way to experimantat-
ion. Consequently, with a little coaxing, the students can see that there
i1s no scientific way of determining what is attached to these devices.

,
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Allow several students to play with the box. (It must be a
psychological law that human beings like to'play with switches). 1In a very
short time the class will have passed a.very importan; step in the scientific
thinking process. They will all be aware that there is an interesting
problem to be solved. How does the black box work? What 1s inside the
box?

Quickly the students will begin performing small expe;iments of their
own. Which switch positions cause the bulb to light up? What patterns cause
the bulb Fo shut off? What is the effect of pluggjng the light bulb in at
various output jacks?

At this point the class can easily be steered into realizing that
they need a convenient way of indicating switch positions and bulb positions.
It 1s not difficult to get the class to think of using numbers or letters to
designate switches and output jacks. Here, then, the class can begin to see
how the development of a concise ''scientific notation'' greatly facilitates
logical thinking.

Various studgpts at this point might also suggest that some of
their past experiences ;ith electrical circuits might be applicable in the
ordinary house lights, that is, anything which involves switches and objects
l1ighting up. : |

Finally, the students'are ready to begin to guess chedries whi;h
might explain the operation of the box. Someone is sure to suggest that the

switches complete the electric circuits. Perhaps, various other ideas might be

suggested. Each student can then be asked to prove that his particular theory

is correct. Does the theory édequately predict allzthe known facts in the
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problem? Can the student draw a wiring diagram which predicts the connect-
ion between switch patterns and a 1it or unlit light bulb.
Immediately after the conclusion of this exercise a related discuss-

lon and/or a homework assignment must be given. It should be emphasized that

-

the main purpose of the experiment was to learn about the scientific process.
Discovering what was in th& black box was an opportunity for involvement in
that process. Any questions can be asked which lead the student toward

wondering how he weant about solving the problem. For example,

(=
&

1) Why were you interested in discoverinéxwhat was in the box?

2) Did you utilize any of your past experiences in order to find the sol-
ution? How did they help?

3) Before we opened the box were you sure of what was in it?
Could it have been different?

4) How did you go about deciding what was in the box? What did you base
your ideas on? .

5) Do you think chere was any set method that we used today in finding
the solution?

6) Did you use your imaginations? Did you make a lot of guesses?
were alot of those guesses incorrect?

7) How were incorrect guesses (i. e., incorrect theories) proven to be
incorrect? A

8) Write down very carefully a summary of what we did today. Discuss, in
your opinion, how what we did was like what a scientist does.

9) It has been said that the experiment illustrates very much how a
scientist tackles a problem. If this is true write a short essay discuss-
ing how a scientist attacks problems.
Some of the questions are more suitab%ﬁ&ag homework exercises than
¢
as discussion material. They all tend to get the student thinking about his

class experience as a process of thought.

This demonstration can always be used to begin discussions on a

43
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sophisticated level about the philosophy of science. One can begin to discuss
things like:
1) What is truth? Are scientific_theories absolutely true?

2) What is a good theory? Are they simple? Why couldn't some other
®yiring diagram be possible? .

3) What sorts of phenomena in the world can science deal with? Is
astrology a science? What about the switch which has no effect (Switch C)?
Can science ever determine what 1is connected to 1it?
Needless to say such questions should only be asked toward the end of the
course. Other more sophisticated uses of this experiment are discussed below.
This section has several advantages. First it illustrates a
scientific problem from start to finish. Therefore, it gives the class
insights into hew a scientist éackles a problem; these insights must be re-
inforced by directed questions and ;ther futuré work. Second, the unit is

simple enough to be understood and fascinating enough to be appreciated by

non-science types.
C. EXTENSIONS

This experiment also has some interesting extensions. °“Suppose that r
after the class has cémpleted it, the instructor alters the switch system by
adding a resistor or two into the circuit. In this case with the switches in
the same '"lit'" positions as before, some of the positionings will cause a
definite di@ming of the bulb. The students can be asked if their previous
theory is still a good description of the phenoﬁenon. If‘shodid be noted that
the theory still explains the 'bulb" properties of the problem, but some
details are not accounted for. Should the theory be scrapped or modified?

Scientists, of course, try to modify theories when discrepancies appear rather

T 44
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than totally discard them if they can. If it should be modified how can the
dimming be explained? If someone proposes an idea of an object which ”wea#ens
electricity".lwhere should it be placed in their previously develoned wiring
diagram? Again the students, in this case, caﬁ get a good idea of the adyant—
ages and limitations of scientific theories. Suppose at the end of the
experiment, after a wiring diagram has beén developed which the whole class
accepts, that the instructor does not allow the devicé to be opened. In other
words. the class can only rely on indirect evidence (the lighting of the bulb)

to determine whether their diaéram 1s correct. One might ask the class: Is

the 'real”, "correct', "truthful' explanation of what is in the box what we have

., decided? How do we really know that that particular circuit is in the box?

Could not the truth be something other than what we have imagined? In other
words a discussion can be brought in at this point which deives into the prob-
lem of Qhat sciencé can realiy decide. All scientific theories are like a -
model of a black box which we Eag never open; we must always relv on "indirect"
evidence. We‘can, however, construct alternate sets of experiments that
confirm in many different ways and in hany instances the validity‘of usefulness
of our model. After all this is the purpose of science, to construct self
consistent.models based on integrated theories that enable ué to understand the
behavior of nature. Science does not recognize truths that are 1naqcessible
to experiménfation. That's the domain of Philosophy. |

This does not mean that if there is a natural law which prevents us
from looking in the box, the study of the behavior of the box is not a scienti-

fic problem.” It may be important to know how the switching mechanism on the

box affects which light comes on and in what order. If this is the case then
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we become concerned with constructing a model whose predictions are consistent

with our observations. But if we are asked, "How do you know what is really

in the box?", implying that there is some reality that transcends measurement -
remember there is a physical law which says our view of the contents of the

box is restricted - the question'is-beyqnd the scope of science. ''What acts

as if it is in the box?" is a scientific question. i:yhat is in the box?"

becomes a philosophical question.

s
2 U
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V. NUMERICAL PATTERNS AND MEASUREMENT

A. INTRODUCTION

Simply stated, the charge of the scientist is to seek order in
the behavior patterns of natural- phenomena. 1In so doing he relies on a
rich resource of tools that are natural and useful, namely mathematics.
Mathematics is anfinvention that is an inseparable part of man. We are
mathematicians all. We deal with life and its problems with a sense of.‘
symmetry, order, and balance. 1t is evidenced from the ho;aes we build to ~
the art we produce. But for most of us this sense is a qualitative one

not easily articulated or communicant; but it is there.

This sense is also a valuable endowment in science but, as a

vague or qualitative sense, it has limited value. Science demands a more

precise and quantitative treatment. It is in the'nature of the questions
we pose and the type of patterns we seek, perhaps because Qf the technological
origin of science. Mathematics provides this precision. It is a language
which insures a precise and universal meaning to our descriptions‘of phen-
omena, that our conclusions are tesfable and the conditions of the tests
are repeatable. But more than that it is a language so deeply and naiutally_
4 part of us that it is a fertile 'medium for our search for patterns.
Mathematics, then, is an analytical tool. A valuabie and indis-
pensible one, but only a teol. It needs stuff on which to work. If the
mathématical models we construct and the images of numerical patterns we dream
have no connection to reality, what we are doing is not science. It may be

a valuable intellectual enterprise but it will not be science. Science is

- 47
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a direct and meaningful interpretation'of natural phenomena. The bridge
between the world of reality and the‘world of mathematics is physical
measurement, measurement with meter sticks, clocks, and scales. This 1is
the stuff we knéad in a search for order, the grist for study. But it too
taken alone is not science. Sclence is both measurement and analysis.

In this section we have developed several activities which pro-
vide a concrete basis for clarification and discussion of the role and

value of measurement and numerical patterns in the study of physical

phenomena.
B. A HISTORICAL EXAMPLE

A classic example of the use of numérical-patterns in science is
the famous astronomer Kepler's use of geometry'and arithmetic scrutiny to
classify the regularities.of the orbits of the planets of our solar system.
Kepler's early attempts to order the astronnmical patterns is particularly
fascinating. AS a young student he was captivated with'the notion that the
number of planets were fixed and set out to discover why. His solution was
a brilliant and unusual ene. A short account is given in Appendix 3.

_ Religion was a great influence on the early astronomers. They
were awed by the 'perfection” of the "heavenly' bodies. But as scientists,

they were equally impressed with the 'perfections'" of mathematics. So it was

natural that Kepler attempted to explain the order of the heavens by studying

the properties of geometry. (It was not until 9Q years later with the dis-

coveries of Newton, did the principles emerge to give explanation of astronom-

ical phenomena in terms of gravitational forces) His solution involved a

purely mathematical relation between the ratio of the radii of concentric

-
bl
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spheres inscribed inside of regular»pblygons with an increaéfﬁg numbe; of
sides. It is a property of three dimensional geometry that there .are only
3 regular, three dimensionai polygons. During Kepler's time there were only
6 known planets. As astronomical chances (no pun intended) would have {t,
the ratio of the radii of spheres so constructed was almost exactly the

same as the ratio of the orbits of the planéts. This was both a stroke of
luck and an unfortunately cruel joke of nature. The fact that the numbers
are almost the same is an incredible accident. The reason that the ratios
are as they are have little to do with the properties of geomectry. (The
problem of why there are only 'six" planets posed by Kepler is not consider-
ed a "basic'" physics problem today; for the fact that the number is what

it is - namely nine - is due to the conditions of creation of our solar .

-

R

system.)
Kepler was disturbed by the inexactitude of the result. He spent
several years of his life on a study of the precise motions of the plﬁnets
but could not redeem his original idea. After 22 years he published his
famous three laws on which modern asF:énomy is based. These three laws are
also numertcal descriptions; but this time his findings were obtained after
studying masses of data on astronomical sight:ings.= These laws were, however,
not as symmetrical or as appealing as the first erroneous '"law"; for its‘
aesthetic appeal is almost universal, Even those who know little about
Stiénce find it intriguing because of its.disarming simplicity. This is
an indication that there is a mathematical sense of symmetry lurking in all
of us, prompting us to play with numbers and shapes imitating the patterns

of nature.
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Kepler's three laws were arrived at after years of painstakingly
laborious study. The styie and the use of mathematics used in it is quité
different from that in the f;ysagtheory. Yet; in both cases Kepler drew
on deep éesources of mathematiéal insight to discover these patterns 80
ingeniously hidden. In neither case are the paéterns obvious; nor dolfﬁéi
jump out at &oﬁgafter a moment's reflecﬁion; they only reveal themselves
with torturous effort; Mést patterns of numerical relationship among
physical properties are not as difficult to find as those Kepler uncovered.
In the next section there are several problems listed as exercises in forms

of numerical and geometrical pattern deduction.

Quesiions

- .

(a) Discuss why the basis of Kepler's'first idea, namely, that

one can study the properties of geometry and from that alone

deduce the properties of the planetary system would not be
considered sciende today.

(b) Study the statement of Kepler's three laws in appendix 4 and
discuss whether Kepler's study leading to these laws may
be considered science.




C. EXTENSIONS

" The studiés in this séction are intended to provide an opportunity
for students to practice searching for numerical patterns associated with
the measure of quantities represenfing physical properties. The first set
of problems are analogues of physical problems using playing cards and a
slide rule. 1In this instaucé>these devices represent physical apparatus
with conveniently built in "meters'" that generate a measure of some physical
property of interest, e«g., a’length, a weight, or a time interval. The
analogue problem thus helps to relieve the anxieties that a student may
feel about the details of precisely how a quantity is measured with real
apparatus until he has developed confidence to deal with it.

1. Patterns in Analogue Problems

3

a, Cand Game

This activity has several variations. Its basic format
uses several decks of identical sets of cards.

Variation I: (For two plavers)

i) Create a pattern with a row of cards using as many mixed
decks as you need to produce the patterns that you have
in mind. Consider for example, the pattern below,

o (8] [0 (o] 8 18]0] s

4 L.

ii) Remove several cards but leaving enough so that a pattern
is still evident.’
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ii1) Ask your opponent to identify the pattern.’

iv) As he works on a solution, your opponent may request
additional data in the form of the identity of one
or more of the missing cards as a test of the correct-
ness of his theory. Or he mav simply need additional
information.

v) Each player is given 50 points at the beginning of
the game. Each time your opponent requests an
additional card he must guess its identity on the
basis of the pattern of cards showing. If he guesses
correctly, he get 10 additional points; if he does
not, he loses 10 points.

vi) The game is over when each player has identified
(correctly or incorrectly) all the missing cards.

Bre-Y

Variation II: ' L

For ease in accommodating a large number of groups at ome
time, sketches of a sequence of cards should be drawn on a
single sheet. Each sheet has a code number to which the teacher
can refer when more data is requested

Variation III:

Games may be played between groups of students where thev
arrange the pattern for the other group to find, and simultaneously
try to deduce the solution of the pattern the other group has
given them.. Alternate turns are taken at giving solutions or
taking more ''data’.

Variation IV:

Instead of displaying an entire sequence of cards at one time
a more difficult version is to begin with a large number of
points and no information. With each card that is turned up
points are lost if the student does not predict the identity of
the card correctly or points are gained if he guesses correctly.

In figure 9, we have given several card arrangements as
suggestions. '
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b. @ometrnic Pattens
This exercise 1is siﬁilar to the one above except geometrical
figures are used in place of the cards. With this variation in the game,
there is a greater flexibility in what features of the objects are to be
compared and ordered. Several modifications of this game are possible as
long as the essenfial rules remain the same:'

1) There is a sequence or pattern of arrangement of the objects
that is to be guessed by the other. )

ii) After the pattern is established, some of the objects are
removed so that the person trying to find the pattern may test
his solution by predicting features of the missing figure.

i1i) Because comparing geometric figures is more complex than compar-
ing cards, there is an additional rule. There may be several
properties of the cards that may be useful, but give only partial
non-unique solutions. For example, if there is a pattern to the
shapes of the components of a figure that can be predicted, this
should be given credit, even if the total solution requires
knowing how these figures are connected.

''squares'', we have

As an example of this version of the game of
created a sequence of geometrical shépes shown in figure 10. There are two -4
properties that we have arranged in an order in this figure. The simplest
ordering of the figures is according to the number of intersections appearing
first in the arrangement. All possible variations of singly overlapping
~triangles that produce 2, 4, and 6 intersections are displayed. This 1is one
feature of the ordering, but only a partial solution. With this alone,one
still d;;s not have a unique pattern, i.e., it would give us no unique way ‘

of ordering the figures with the same number of intersections. We have

provided for.ﬁhis in arranging the figures in order of increasing periphery

of the areas of overlap. If one wants to add a numerical quality to the pattern,
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che value of the peripheries of the overlap areas could be arranged to

be increasing integral multiples of one another.
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c. The Stide Rule as a Numben Gemeraton

In this exéfcise, the slide rule may be éonsidered to be a
"measuring'’ instrument where the numbers on its scales represent éome
physical property. Comparing the numbers on adjacent scales will be
analogous to comparing numbers on instruments that measure some physical
properties. Our problem is to find a relationship between the numbers on
adjacentvscales and to express it mathematically.

This exercise has an advantage over those above. Once a relation-
ship 1is empirically discovered by comparing a set of numbers, it may be
checked to see 1if it is.also valid for an even larger class of number
chosen at the discretion of the experimenter, i.e. he may test his law
under new experimental conditions of his own choosing,

1) Relation between tfze D and A scales:

As a first step, it is‘important to have. students decide precisely
how they are going to record their data. Most choose to record their data
in two column tabular fc¢ m, with adjacent numbers on the D and A scales B
recorded on the same row. )

As the numbers are being read off theAsiide rule, it may occur

to some students that they are not sure where the decimal place goes in

the numbers they are reading. They should make a guess and proceed.

The students are instructed to collect pairs of numbers adjacent

on fhe scales until there is enough data that suggest a pattern to them.

SN

Patterns that may fit their data are constructed by generating rules that allow

them to obtain one gset of numbers from the other. For example, 1f 2 and 4 are
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a pair of numbers to be related; poésible relations are 2 + 27= 4,
2x2m=4, 22 = 4; etc. These relations are then to be tried on other
pairs of numbers until all the incorrect ones are eliminated. Once a law
has been obtained that correctly relates all numbers he has obtained from
the scale, he should try to use his law to predict a number adjacent to one
he has not tried yet, thus, checking the validity of his law to be extended
to more géneral circumstances. In this way the basic relation D2 = A may
be empirically deduéed, where D and A represent the adjacent numbters on the
D and A scale respecéively.

11) Relation between the D and K scale:

The relation between the D and K scales should be ohtained

above and found to be D3 = K.

111) Extensions fo use of the nelations found above:

Encourage students to use their laws and new circumstances and

them check them. For example, use these laws and the rule to find 220 and
5.8 , then prove that their slide rule obeys the law by séuaring the
number found to be’ﬂaa_-and comparing it with 20, similarly cubing the number
supposedly equal to 5.8 , cubipg it, and comparing it Qich 5.8 . A
iv) Relation between the K and L Scales:

At the outset of this experiment?it is necessary to discuss the
importance of considering experimental error whenever making measurements. The
idea ig easily extended to reading of the scalesnén the slide rule. How

accurately can these results be read? Tt is clear that there ig some

inaccuracy in his readings. For the purpose of this experiment we shall

. 58 IO
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>

assume the error is 5%. Students will agree that it is a reasonable estimate.

It is necessary to make éhis consideration especially when
studying these scales because, there is a fortuitous, approximate, yet
appealingly simple relaiionship between the adjacent numbers on these
scales that one is led to postulate if one believes that the scales contain
an approximate 5% .error. For example,'the numbers on the K scale opposite O,
0.1, and 0.2 on the L scale are 1, 2, and 4 respectively. This data is
taken with the same assurance as that taken for the other scales. However,
for larger numbers on the L scale, the apparent relation of doubling the
numbers on the K scale as we increasé‘the numbers on the L scale by 0.1 is
only approximately valid only if we aééume an approximate 27 error in the
readings on the K scale up to valuéé of L = 1.0. The relation is so simplé
and attractive that we assume it must be right. Surely it‘could be no. |
accident.

As an exercise ask that this relation be expressed in equation

10L

form. Thus, we arrive at the result 2 = K.

v) Extension 04§ the Relation between the K and L scale :
This exeréise is recommended for only those students with a
facility for mathematics, as they will be required to manipulate transcen-

dantal equations. However, the results and the conclusions may be profitably

shared with the students who are not mathematically inclined by a class -

report at the end of the expen&g{iti
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After having arrived at the empirical law 210L

= K above, we have-
an obligation to check the validity of our law.  One kind of such check is to
see 1f this result 1is consistent with the other¢1aws that we hold to be true.
We may then check this law with the law D3 = K 1f we had a relation between
the D and L scales we could eliminate D in these two equations and derive a
relation between the K and L scales. We provide students with the relation
LogigD = L by postulating it.

Exercises

ai) Verify that the relation LoplOD L 1is correct bv checking a
book of tables with the values for logarithms.

3

ait) Using the relation Log oD = L and D = K, derive the relation

103L = K.
The result of this calculation yields 103L = K which is obviously in conflict
with the empirical relationship. But if we check the validity of the deduced
relationship for the values of L and K used in finding the empirical relation,
we find the ''theoretical' law is also valid within the limit of 57 accuracy.
Thus, we have two diffetent mathematical relationships that cannot bhe
distinguished between if we have error bars of 57. We need more accurate
measurements of the phenomena that they may represent to distinguish between

them and choose one or a better representation than the other. Or extend

.our measurement to cases where the differences between the two laws 1Is more

than 5%.

To underscore these similarities of the two laws within 5% inaccuracy
we have plotted the results of the two laws for two ranges of the values of
L and K with 5/ error bars in figure 11. Significant differences hetween the

two laws are apparent only for large values of L, as showm in figute 12.

60
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K - Readirgs on ¥ Scale
Wl

24

20

16

12

Value

- A
MATHEMATICAL RELATIONSHIP

BETWEEN ADJACENT NUMBERS ON
THE L AND K SCALE ON THE SLIDE RULE

Read. on Value Predicted by

L scale K scale Relation K¢ ‘Relation, Ke T
0 1 1 1
0.1 1.98 2.00 2
0.2 3.96 3.94 b
0.3 7.9 - 7.88 8
0.4 15.8 16.2 16
0.5 31.5 31.6 32
0.6 63 63.0 64
Note: Both sets of theoretical Relations
‘ K&, and K, fall within 5% error
bars on experimental data.
Hence, we cannot distinguish
between these two mathematical
relationships as correct trends
based on this data.
Where
K+=103L, (Theoretical Law)
Ke=210L, (Empirical Law)
v L T T Y T T T T T Y 7
0.1 0.2 0.3;:. 0.4 0.5 0.6

Fig. 11
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2. Numer{gglﬂfggterns_gp Physical Problems

In the following problems we extend our use of the techniques
used in the previous analogue problem +. real nhysical problems -

a. The Simple Pendulum

A set of pendulums are made available for students to study.
The set consiéts éf several simple pendulums with identical "bobs'vl with

the length of the supporting string varying as well as several of the same

length but with weights so obviously different they can be distinguished

easily by:feel. The purpose of the experiment is to study some physical
property of a system that can be easily measured with a meter stick, stop
watch or force scale, for example, and that disnlavs a simople numerical or
mathematical relationship easily detected. During the studv, the values of
a numerical description of the relation between the nroperties studied will
bé analyzed and its advantages over more qualitative studies pointed out.

At the outset of the experiment the students should be diyided into
small study groups and each instructed to make a comparative studv of their
set of pendulums in order to deduce some useful law of behavior for swinging
pendulums, such as the relation between the period of oscillation and other
properties of the pendulum. So stated, the prohlem is sufficiently general
to be open to many approaches, vet sufficiently specific. fhat students should
feel that the experiment has a dircction.

As a motivation for studving this préhlem, several examples of the
use of hanging objects in engineering or science nrobhlems should be cited

and the value of understandine the nrinciples of their behavior, such as

63




pendulum clocks or suspensign bridges, etc. It should also be readily admitted
that the pendulum system was chosen to study because it is simple and a rich
resource for problems.
The first stage of the investigation should be a qualitative study

that will be useful in shaping a more detailed study. Students éhould be
helped to organize their study by asking them to list properties of the
swinging pgndulum that may be worth studying. 1In this way a number of
possibilities are generated, including weight, size, length, displacement,
etc. Students should then compare pendulums with different properties and
note the difference in the behavior. For example, pendulums that have differ-
ent lengths but are otherwise identical, swing at different frequencies.
Finally, for ease of analysis these statements may be translated into statements
about a single pendulum with variable properties, such as:

(i) As 1 (the length) increases, T (the period of oscillation increases.

(11) As d (the horizontal) displacement increases, T is unchanged.

(i11) As W (the weight of the object) increases, T is uncLanged.

(iv) Etc. .
Such a set of data constitutes a good qualitative description of a system.
Information such as this can be shown to be useful, informative, and even
enlightening. Several of these relationships are surprising and could not
have been anticipated. Others are obvious and clear from our everyday exper-
ience.

In order to obtain sufficient information for a comparison between

the above type of study and a quantiative one, we ROve to the next part of

the experiment. One of the qualitative relationships found in ;he first part

64
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of the study should be used as a subject for a more detailed quantitative
study, for example, the relation between T andee ,( . Instruct the students
to measure the period of oscillation and the length of the pendulum for six
to ten différent values of each. Stop watéh time interval and centimeter

length accuracy will suffice. A table similar to the following is thus

obtained byteach group:

Table 1
,Z 10cm 20cm 30cm 40cm 50cm 60cm
T .63 sec. | .90 sec.] 1.1 sec. 1.26 sec. '1.4 sec{l.55 sec.

On the face of it this data is of 1little more value than the
qualitative description,'except there is more of it. The advantage of a
quantitative measure of the properties of a system lie in the precision of

- their projected predictions about untried conditions of the system. For
example, if we ask:

(1) What is the period of oscillation of a pendulum 70cm in length
and

(11) What is the period of oscillation of a péﬁdulum 35cm in length,
using our qualitative analysis, we could answer only, (1) it is between 1.1 sec.
and 1.25 see., respectively. But using this data and mathematical techniques
we can glve precise answers.

The use of a mathematical analysis assumes that the results;we observe
are a part of a more general pattern that may be obtained by an extension of
these results. But the extensions must contain the flavor or trend of the
behavior we have noted.

In tabular form we have no method of obtaining

precise answers to the questions above, but we can translate the
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the ggestion qicely into a problem of graphical or pictorial extensions.
We begin translating the data shB;h in table T into graphical form as
shown in figure 13. An answer to question‘(i) requires extension to

the conditions beyond those already observed by drawing a smooth curve
through all of thé points that represents the behavior of the pendulum
and extending the curve 'in like fashion’ beyond the points of data. 1In
this way we may project predictions of the behavior of the system 1in a
fashion "like" that of previous behavior. The numerical values of the
conditions sought we indicated on the figure 13. N

Clearly there is some arbitrariness to the kind of smooéh curve we
drav through the data points, but it gives us an answer that is more
precise than the qualitafive results.

A representation more exact than gravhical extensions may be
obtained if we-appeal to mathematical extensions. Using the same beliefs
that motivated us to draw smooth curves between data pointé, we may ask,
‘what is the simplest mathematical expréssion that represents a smooth curve
between the data points?' and use the resulting formula as mathematical

¢ .
representation of the relationship between T and .. For the data used,

"
1< [ 1s appropriate.




Procedure

(1)

(11)

(111)

(iv)

(v)

(vi)

55

Using the table of data that you constructed similar to
table I, predict the period of oscillation for a
pendulum 5cm longer than the longest yvou have tried.

Plot the values of your measurements of the length
of the pendulum, 1, and its period of oscillation.

Draw a smooth even flowing curve through the points

on your plot. Continue this curve beyond the points
representing your data.

Using this curve to define a relationship between the
length of the pendulum and the period of its oscillation
predict the period of oscillation for a pendulum 5cm
longer than the longest you have tried.

Construct a pendulum whose length is 5cm longer than
the longest you have tried so far. Measure its period
of oscillation. Compare this value with the values
obtained from the table and from the plot

Repeat this exneriment for a pendulum whose length is
between the length of two whose period you have
measured and recorded in your tahle. Predict the
period of this pendulum using the data in the table
above and then by using the curve in your graphical
plot. Finally, construct a pendulum of this length
and measure its period. Compare this value to the
other two predictions. :

Discuss the relative merits of the qualitative study
and. the quantitative study. )

67
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One of the advantages of a mathematical dascription of a system is
its value in capturing the universal aspects of behavior of a class of svstems.

For example, the description of the pendulum we have obtained;above is in-

s

dependent of the shape or size of the object used to obtain the data. Thus,
the mathematical model that we have created 1s potentiallv more widelv
usable as a accurate description of other swinging systems. It mav, for
example, prove a valid model for frewiv hanging cylinders.

Problem:

(1) Check whether the relation between the length of the pendulum
and its period of oscillation expressed as T2e< X is valid for
freely swinging cvlindrical pendulums. Obtain several cvlinders

" i of various lengths - ideallv a variation of length from two to
five times the smallest should be used - and experimentally
compare their lengths and periods of oscillation to the theoret-
ical relation of T20<,2.

b. The Simple Lever

A simﬂlc lever system 1is another physical svstem that may be nro-,
fitébly studied to gain insights 1into the”advantages'of”quantitafive
measurementé. An inexpensive and easily obtainable system mav be composed
of a vardstick as a lever arm, a system of small standard weights from a
two pan balance system and a sturdy fulcrum.

"Using a justification similar to that for the pendulum problem for
this study, namely that it is a good representative nrohlem of the larger

class of real physical problems that are studied in physical science, instruct

students to studv the lever system, first qualitativelv and then quantitatively.

69




Procedure

(1)

(11)

(iit)

(iv)

v)

fualitative Study

Using two weights only, not necessarily the same value,
find as many different relations bétween the position of the
weights and the balanced condition of the system as vou can.

Using one weight in a fixed position on one side of

N A o

~‘the lever ‘find gualitat tively ivnt:fc. different weights must

be placed on the other side, one at a time, to achieve
the balanced condition.

Construct qualitative laws describing your results.

Quantitative Study

Make measurements of four conditions under which a bhalancea
is achieved using two fixed weights. Record the value
of the weights and their distances from the center support.

After you have constructed a table containing the distances
for two objects in four balanced positions, move one obhject
to a new positinn. On thz basis of the data in vour table

-alone, gredict where the other-object must be placed to

regain a balanced condition.

Plot on a grarh the distances of one object from the
center support versus the distance of the other object
from the center support during balanced conditions. Using
the graph, predict where one object must-be when the position
of the other 1is fixed as descrihed ahove.

Finally, experimentally determine where the other weight
must be if the balanced condition is to be regained. Measure
the distance of the second weight from the center support
and compare this value with the two predicted values.




Pictorially

" to maintain balance

Fig. 14

,317{1




Verbally

1. Given two weights not necessarily the same, there are numerous

balgnced positions.

(b) Once a balanced position is obtaineé; if one weight 1is moved
in or out from the fulcrum the other must be moved in or out
as well, if the balanced condition ié to be maintained.

2. >(é)A If’é Ealanced cdﬁdiﬁion isqébtﬁinédvfor ﬁw& Qeighfé‘énd one'is
replaced by a lighéer weight, the balanced position of the new
weight 13 further from the fulcrum.

(b) vaa balanced condition is obtained for two weights and one is
replaced by a heavier weight, the balanced position of the new
weight is clogser to the fulcrum.

As in the problem dealing with the pendulum this is a useful
description, but it is lacking precision. Instruct the students:
to make a quantitative study, thisrtiﬁeAmgasu;ing,andrreco;ding»
the value of the weights and the position under balanced conditions.

As a consequent, groups will generate data tables similar to that

shown in figure 35,
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LEVER STUDY

Balanced condition with two weights with varying position

Value of Weight I = 300gms.; value of Weight II = 100 gms.

X3 Sem 10cm 15cm 20cm

Xy 15¢m 30cm 45¢cm 60cm

fulcrum

[ rr ’ - . .
AR

Balanced condition with one weight fixed (W1) varying position and weight
of W, -

Value of Weight I = 300gm; xl = 10cm

Xy 30em 60cm 15em

Weight II 100gm 50gm 200gm

Fig. 15
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|
\
' Problems:
Using the data generated in figure 15, and graphical techniques

of extrapolation and interpolation, predict:

(i) . The-n

(i1) The necessary position of X, for a balanced condition of W;= 300gms.

wIIB 100gms. and Xl = 12.5cm.

(111) The necessary position of X, for a balanced condition of Wp = 300gms. ,
X, = ;Ocm, and Wyy = 150gms. :

(1v) The necessary position of X, for a balanced condition of Wy = 300gms,

X1 = 10cm, and Wip = 75gms .

(v) Try to find a mathematical relation among the quintities Wy, wII
Xy, and X2 as suggested by the "trend" of the data. -

Hint: Try simple relations like:

WI X WII = X1 Xl x X2

or

v . W.
» XI 11 etc.

C. A Companison of the studies of the Lever and the Pendulum
Questions:

v

\_(i)h What was the ¢ difference in the two solutions obtained in these
problems’ e ]

(1i) What solution contains more information?

(111) What was the usefulness of making measurements?

Q ’7‘1
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d. Connecting the Resutts to Other Principles
At the end of ﬁge experiments on real phenomena it is a natural
reaction for the students to search for a more fundamental unde;sfanding
of their results, asking "why" is the period of oscillation of the
_pendulum relatedAxo“its«lenghhuthe,way it is or "why" different weight
objects balance as they do on opposite sides of the fulcrum of a lever.
The question does not arise for the analogue problems because it is cléar
they are isolated exercises or artifical constructs. Trying new information
and insigh;s to the rest of what one knows is a natural instinct, a tendency
of the laymaﬁ.ana préfessional scientistAalike. Only the degree of—logical
rigor and the methods used in making the connections differ for eéch. When
a layman asks 'why" there are rarely narrow constraints on the quality of an
acceptable answer. Often an answer that indicates the degree.of difficulty
of a solution or one that idencifies'a’fdndamentalmbrihciple that is opera-
tive 1s acceptable as a useful théugh loose connection. Scientists make

more stringent demands on the quality and nature of their connettions. For

RS

it is an integral part of the structure and practice of science that connect-
ions between our discoveries of natural phenomena be sought that are logically
rigorous and that our models constructed taken as a whole form logically self
consistent structu¥es. As an example consider the question qf why the period

of oscillation of the pendulum is observed to be independent of the weight

{or -mass)of - the pendulum-bob.-and.dependent. on.ite. length.. . We can construct.. .. ...

two different levels of "answers'. First we will construct a mathematically

rigorous answer to satisf§ the scientist who is versed in the principles of

~
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basic physics and calculus and from this extract a less rigorous answer.
The point in displaying the mathematical solutions here is not to prove
the legitimacy of these conmections but to display the ingredients, charact- -

*

er and structure of this kind of "answer". An appreciation of these points

_.will not require an understanding.of the.equations usgad only an ability to

identify the constituent components of the solution.

The mathematical solution displayed in figure 16 involves a -use of
severai areag of mathem&tics but only two physical principles. Closer
inspection shows that even the physical principle in step 1l is on;y another
form or special case of the principle usea in step 5; Hence, the only physical
principle used is‘Newton's second law and the fact that the weight of an object
ma& be expressed as its mass times the acceleration of a freely falling object.

But the latter is also a consequence of Newton's 2nd Law. Consequently, we

may say that the result that Tz'-“l is a ioji.céiw (martvheiita'tical-) kco‘nséq'u'er'xce'

of Newton's second law applied to objects freely swinging at small angles.

The statement is not very exciting for most of us; it has all the
appeal of a gigantic non-sequitor; or we feel 1tke Dr. Watson af;er Sherlock
Holmés has announced one of liis brillian;‘solutions without giving the details.
This 1is one of.the strengths oftﬁeuse of mathematics to make:conAections that

are inaccessible to our everyday sense of order and intuition. By using the

mathematics indicated above we have arrived at an answer we could not have

, gghg:uisgwan;icipatedfunMozee'erywthis*ieiution'iS“rngrbﬂi;'an&”WiTI“Bé”'“‘”“””M””‘W”“

universally agreed on as correct by anyone versed in the techniques used to

find the answer.

PLe




Even so, once having obtained the answer this way we are without
insight unless we reflect on the role of the physical principles used in
obtaining the solution. If we reach “nto the heart of the solution and
inspect the crucial features of the physical principles involved we cah
‘construct a simp1e£ version using“hindsight'ahd'analog{eé. bEéséﬁtiéily what
we have done is to take a system (the bob) which is freely swineing ;n a
two dimensional plane *- it "falls" periodically under its own weight and it
" is repeatedlfﬁhraised“ from its vertical hangine position - and analyze only
the horizontal .component of this motion. Such an analysis plus the use of
an analogy enables us to uddersténd why the resultant motion is independent
of the mass of the bob. The problem as analvzed above is similar to a ball
rolling down a frictionless inclined plane, where the tendencv of the ball
to fali is translated into some horizontal motion. Tn that case too, which
is mucg simﬁle?, ghe éccéieration of fhe motion i;hindéééﬁd;nt of its méss
but dependent ;n the angle of the incline.

Thus, we are able t; congtruct our second ''answer''. namely that
a swinging pendulum is like a ball rolliné between two inclined planes as showm
in figure 17. Tge fact that the motion of a pendulum 1is indépendent of its
mass is similar to the reasons that the motion of the rolling ball on the
incline is independent of its mass, namely all masses fall at the same accel-
eration and the horizontal component of this motion ha§ the same proverty.

" The fact that the period depends on the length is related to the fact that
the period of oscillation of the ball rolling‘on the incline.

w

This latter argument is not as logically tight nor would ore find
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‘a universal agreement to the analogies. But it is qualitatively '"correct".

In both solutions however, there is an appeal to some more basic or
fundamental 1aQ. The quality of the non-mathematical answer is appealing
because it is simpler and because it is suggestive. We are able to use it

- A o Ao e NP PPV SR

with ‘our &3
only has a value when it is based on a logically substantial aggument that
will bare the weight of exhaustive critical inspection. .
Answers to apparently innocent questions of why the results of
an experiment are as they are, are not always so complicated nor do they
always lead us through a labyrinth of mathematical logic. It all depends
on how far we are’from the "basic" principles in terms of which we want an
answer. In the case of the law of levers that we found, the answer to why
the weights balance as they do has a simple form, namely, "because that's
' the way it is". That is, in this case we have observed a fuhdaﬁéhf&fylaQ;
it cannot be dissected into anything simpler; it is atﬁne of fundamental

starting po.nts on which we base our knowledge of phyéics.

Xperiemce. “But it
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YI. A SUMMARY

A. SYNOPSIS

Upon compléting several sections of this unit on the nature of
physical science, students are ready to probe their experience, -adding a
very deliberate thinking about the structure of science to their practice
of it. By then they ‘will have gained a working knewledge of what science
is about, as they have participated in the process several times. It
becomes timely to enhance these experiences pulling them together, taking

stock 'of the anagomy of iLhe subject, their involvement in 1it, and their
g

Ey

reactions to it.

B. THE SCIENTIFIC METHOD

in the preceding sections, we have refrained from listing the major components
of the scientific method as a procedufal guide so as to encourage students ' to

develop their own style of investigation without heavy suggestive influence.

It would, however, be appropriate toyconstructbthat list here for the purpose

of a comparison with the methods that they developed. Below is a brief summary

. of the principle features of é‘lcientific study.

a) Sensing the ?roblem - As a first stage every scientist senses the
probl;m as a vaguely defined challenge. He becomes fascinated
and is motivated to pursue it further.

b) Defining the Problem - He mulls over his impressions,re-examines

the situation until he can construct a precise statement of
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a problem. Perhaps not at first the one that he had the
original notion abput. This is a valuable step in ordering
his thoughts on the study.

¢) Designing an Experiment - This is a stage of deliberate and
ordered planning where the researcher designs and carries out
a course of action.

d) Search for Pattern - In this stage the researcher attempts to

AAAAAAA form a solution to his problem. If the search is for a g;neral
law that prevails throughout a class of phenomena, then he
searches for the general features that underlies all of the
experiments and attempts to state it simply in the form of a
general law. If he is searching for an explanation of a phen-
omenen in Eerms of well known laws, then he trys to establish
the connection by forming a hypbthesis.

e) Test for the Vglidity of the Results - As'a final stage in the
cgnfirmation of a solution to a problem, the researcher must
extend his test to include new cifcumstances that show that his
answer 1s correct and not an accidental matching of a model to

| reality.

i The features are not an exhaustive listing of the possible steps or stages'of

|

a scientific study; but they are representative of the major features that

are found in most. It must also be pointed out that the order of these features

as listeqfabove taken as a whole represents only on ideal procedure. 1In

actual practice the sequence and frequency with which these features occur

vary with the style and ingights of the individual researcher. The process
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of creation is a scientific study, just like that in anv other creative

human endeavor such as music or art cannot he wholly anticipated.

Dues £ ons

For each of the investigations vou carried out in preceding sections:

(a) Identify those features listed above that also occurred in
. . ‘ your studies.

(b) 1Identify those features or stages that were found in your
studies but are not listed ahove.

(c) Construct a diagram that shows the order and frequency of
occurrence of things that represent each of your studies.

(d) Using the diagram you construct to represent each of your
studies indicate which features you consider most important
to the success of the study as a whole.

As we have indicated above, the features of the scientific study
listed are the bold outlines or the skeletons of the structure. There is an
elusive component that is difficult to articulate. Tt ties thesé‘components

_Epggther and provides the soul of the studv. It is this aspect that the

e érofessional sclentists pursues thle subconsciously engrossed in and executing
all the others. For him the elements of the method we have listed are so
familiar as to be undeserving of conscious consideration, like breathing, but

just as necessary. It is in this spirit that P.W. Brideeman made his remarks

about the scientific method reprbduced in abpendix 1.

Ques tAors

Review Bridgeman's statement on the scientific method.

3 (a) What do you suppose Bridgeman means when he writes, “In short,
science is what scientists dn, and there are as many scientific
methods as there are individual scientists."

Q o 53{3
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(b) What do you suppose Bridgeman means when he writes that
scientists feel complete freedom to use any method or device
whatever which might yield the correct answer?

(c) What procedure does a scientist follow in trying to guess a

hypothesis? 1Is there any method one can follow in order to
guess the solution?

C. SCIENTIFIC TRUTH

One fact about modern science is that it never deals with the
question of "why' things are the way they are or of "why' things behave the
way they do. The domain of scientific éndeavor is to describe as silmply as
possible how things behave with one znother in such a way that it enables
them to predict the outcome of future events. If pushed by a layman with
thz question "Yes, yes I now understand 'how', but tell me ‘'why'?" The
sciéntist is apt to answer "Because thats the way God made it." The layman
may at first be disappointed with this reply, but only because he has not
considered carefully what he means by "why'', This question is a request to
have sdmething explained in terms of something more basic, i.e., that logical
connections be made betwezen some other basic truths or starting points.

Scientific truth begins with descriptions of general time honored patterns of

the behavior of nature.

Thus,_ﬁggig scientific theory such as the theory of gravity is true .
if it is a good (i.e., useful) description of the behavior of that phenomenon.
Search any text on physics for the section on gravitational theory, for example,
and it will begin with a mathematical description of the attraction between
two masses. There is no explanation of "why" they attract; that description is

the point of entry into the theory. Hence, a theory is a model of reality whose
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usefulness has been substantiated by éxhaustive experimental evidence.

Some models are "truer" than others for there is no unique way
of representing the behavior of nature. Ofcen:several distinct modeis will
-do just as welliét explaining a given set of experiméntal data. One chooses
between them by ;xamining larger sgts of data until one is able to discard

those that are proven inappropriate on the basis of new informat:on.

Qestions
(a) 1Is astrology a science?
(b) How do men choose between two scientific theories which

describe the same phenomenon? 1In other words, what makes
a theory good or bad? ]

A}

(c) What do people mean when they say science is "exact'? 1Is
what a scientist does when he guesses at answers to problems
exact? ’

(d) ' Are there any experiences which you have had ‘that you feel
science could not help to explain? What are limitations to
how far science can help us to understand the world?

(e) Construct argument based on experimental proof (or the lack

of it) of the existence of ghosts and of extra-sensory-
perception (E.S.P.). ‘

D. THE PERSONAL MOTIVATIONS OF SCIENTISTS

A typical stereotype of the average‘scientist is that he is an
unfeeling, (at worst) weird, (at best) genius, which by and large is a result
of a,generaluunfémiliarity with the scientist. We may rectify this by taking
a close look at some of the personal reflections of a scientist. Appehdix 2
contaiﬁs-selecgéd quotes from an article by the gifted Nobel prize winnf%éi-'. s

scientist R. P. Feynman on his feelings about science.
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Quesiions

(a) What do you suppose motivates a scientist to work in his
field? Compare this with your motives for choesing your
major field.

(b) Have you ever felt similar to what Feynman is attempting
to express?

(¢) Think of a famous musician getting carried away with his
music. Do you think a scientist can feel the same way about
creating beautiful music? ‘

(d) What does é‘religious man experience when he feels the
nearness of God? Could this be the kind of feeling Fey-
nman is trying to express?

(e) 1If science is a process of thinking and a feeling, why
do you suppose the average man thinks scientists are cold
and unfeeling? 1Isn't he motivated in a similar fashion
to others? What is there that is usually creates this
stergotype?

L. EXTENSIONS

An obvious altermative to classroom discussions or homework

assignments in which the emtire class participates is a good selection

of reading material on the philosophy and history of science. There are
maﬁy books discussing the history of science which are elementary énough
to be of use at this time. There are some good introductory books on the
philosophy of science which miéht be recomménded.b Perhaps, some students
would find the biographies of various scientists interesting. It is sug-
gested tﬁat each instruétor prepare a bibliography of appropriate books

available in his school's library. .

As a beginning we would recommend "The Sleepwalker" by A Koestler.
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It contains an exciting account of the process of diecovery as well as the
discoveries of the great astronomers. Below are selected parts of the preface
of the book which describe Koestler's approach.

"It is a personal and speculative account of a controversial subject.
It opens with the Babylonians and ends with Newton, because we still
live in an essentially Newtonian universe."

"Secondly, I have been interested, for a long time, in the psycho-
logical process of discovery as the most concise manifestation of
man's creative faculty - and in that converse process that blinds
him towards truths which, once perceived by a seer, become so
heartbreakingly obvious." ' ,

. "The progress of Science is generally regarded as a kind of clean,
rational advance along a straight ascending line; in fact, 1t has
followed a zig-zag course, at times almost more bewildering than
the evolutten of political thought. The history of cosmic theories,
in particular, may without exaggeration be called a history of col-
lective obsessions and controlled schizophrenias; and the manner in
which some of the most” important individual discoveries were arrived
at reminds one more of a sleepwalker's performance than an electronic
brain's." ‘
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APPENDIX 1

The following is exerpted from an article by Percy Bridgeman,

page 1 of Reader 1 of the Harvard Project Physics Series.

-
M

On Scientific Method by Percy W. Bridgeman

It seems to me that there is a good deal of ballyhoo about scientific

method. I venture to think that the people who talk most about it are the

" pedple who dé least about it. Scientific method is what working scientists

do, not what other people or even they csemselves may say about it. No

£

werking scientist, when he plans an experiment in the laboratory, asks him-

self whether he is being properly scientific, nor is he interested in whatever

mebthod he may be using as method. When the scientist ventures to criticize

the work of his fellow scientist, as is not uncommon, he does not base his

criticism on such glittering generalities as failure to follow the "scientific

method", but his criticism is specific, based on some feature characteristic

of the particular situation. The working scientist is always too much concerned

with getting down to brass tacks to be willing to spend his time on generalities.
Scientific method is something talked about by éééble standing on

the outside and wondering how the écientist manages to do it. These people

have been able to uncover various generalities applicable to at least most of

what the scientist does, but it seems to me that these generalities are not

very profoupd and could have been anticipated by anyone who knew enough about

scientists ‘to kuow what is their primary objective. I think that the object-

ives of all scientists have this in common - that they are all trying to get

91
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the correct-answer tb the particular probiem in hand. -This ma& be expressed |
in more pretentious language as the pursuit of truth. Now if the answer to
the problem is correct there must be some way of knowing'aqd proving that it
is correct - the very meaning of truth implies thé possibility of checking

or verification. Hence, thebnécessity for checking his results always inheres
in what the scientist does. Furthermore, this checking must be exhaustive,
for the truth of a general proposition may be‘disproved by a single exception-
al case. A long experience has shown the scientist that various things are
inimical to getting the correct answer. He has found that it is not sufficient
to trust the word of his neighbor, but that if he wants to be sure, he must

be able to check a result for himself. Hence, the scientist is the enemy of’
all authoritarianism. Furthermore, he finds that he often makes mistakes
himself and he must learn how to guard against them. He cannot perﬁit himself
any preconception as to what sort of results he will get, nor must he allow
himself to be influenced by wishful thinking or any personal bias. All these
things together give the "objectivity" to science which is often thought to

be the essence of the scientific method.

But to the working scientist himself all this appears obvious. and
trite. What appears to him as the essence of the situation is that he is not
consciously following any prescribed course of éction, but_%pels complete
freedom to utilize any method or device whatever which iﬁ the particular
situation before him seems likely to yield the correct answer. In his attack
voﬁ‘his specific problem he suffers no inhibitions of precedent or authority,
but. is cémpletely free to adopt any course that his ingenuity 1is capable of

)
sugé;sting to him. No one standing on the outside can predict what the in-

dividual scientist will do or what method he will follow. In short, science
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is what scientists do, and there are as many scientific methods as there

.are individual scientists.
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APPENDIX 2

The following panagraphs.are quotations from 'The Value of Science"
by Richard P. Feynman. The article is found in Harvard Project Physics,

Reader 1.

"Another value of science is the fun called intellectual enjoyment
which some people get from reading and 1eérning and thinking about it, and
‘which o;hers get from working in it. This is a very real and important point
and one which is not considered enough by those who tell us it 1is our social
responsibility to reflect on the impact of science on society."

"I have thought about these things so many times alone that I hepe
vou will excuse me if 1 remind you of seme thoughts that I am sure you have
all had - or this type of thought - which no one could ever have had in the
past, because people then didn't have the information we have about the
world today.

For instance, I stand at the seashore, alone and start to think.
There are the rushing waves...mountains of molecules, eacﬁ stupidly minding
its own business...trillion; apart...yet forming white sur£ in unison.

Never.at rest...tortured by energy...wasted prodigigusly by the sun...
poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeafﬂthe‘patterns=of another until
complex new ones are formed. They make others like themselves...and a new

dance starts.

Growing in size and complexity...living things, masses of atoms, DNA,
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proteinf..dancing a pattern ever more intricate.
‘' Out of the cradle onto the dry land...here it 1is standing...atoms
with consciousness...matter with curiosity.

Stands at the sea...,wonders at wondering...I;..a universe of atoms...
an atom in the universe."

The same thfill, the same awe and mystery, come again and ‘again when
we look at any problem deeply enough. With more knowledge comes deeper, more
wonderful mystery, luring one on to penetrate deeper gtill. Never concerned
that the answer may prove disappointing, but with pleasure and confidence.we
turn over each new stonme to find unimagined strangemess leading on to more
wonderful questions and mysteries - certainly a grand adventure?

It 18 true that few unscientific people have this particular type of
religious experience. Our peets do not write about it; our artists do not
try to portray thié remarkable thing. I don't know why. Is nobody inspired.
by our pfesent picture of the universe? The value of science remains unsung
by singers, so you are reduced to hearing - not a song or a poem, but an

evening lecture about it. This is ‘not yet a scientific age."
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APPENDIX 3

\
|
{ The following account of Kepler's study of the "Cosmic Mystery"

and his solution of the five perfect solids are parts of.Chapter II of

-

"The Sleepwalkers' by Arthur Koestler, published by Universal Library,
Grosset & Dunlap:

*For physical, or if you prefer, for metaphysical reasons',
he then began to wonder why there existed just six planets
'instead of twenty or a hundred', and why the distances and
velocities of the planets were what they were. Thus
started his quest for the laws of planetary motion.

At first he tried whether one orbit might perchance be
twice, three or four times as large as another. 'I lost
much time on this task, on this play with numbers; but I
could find no order either in the numerical proportions

or in the deviations from such proportions.' He warns

the reader that the tale of his various futile efforts -,
'will anxiously rock thee hither and thither like the ‘
waves of the sea....'

...'I lost almost the whole of the summer with this heavy
work. Finally I came close to the true facts on a quite
unimportant occasion. I believe Divine Providence arranged
matters in such a way that what I could not obtain with
all my efforts was given to _me through chance; I believe

- all the more that this is so as I have always prayed to

i God that he should make my plan succeed, if what Copernicus

had said was the truth'....

The occasion of this decisive event was the aforementiuvned-
lecture to his class, in which he had drawn, for quite
different purposes, a geometrical figure on the blackboard.
The figure showed (I must describe it in a simplified
manner) a triangle fitted between two circles; in other

v words, the outer circle was circumscribed around the
triangle, the innee-circle inscribed into it....

9~ 90

Fig. 18
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As he looked at the two circles, it suddenly struck him
that their ratios were the same as those of the orbits
of Saturn and Jupiter, The rest of the inspiration came
in a flash. Saturn and Jupiter are the 'first' (i.e.
the two outermost) planets, and 'the triangle is the first

figure in geometry. Immediately I tried to inscribe

into the next interval between Jupiter and Mars a square,*

between Mars and Earth a pentagon, between Earth and

Venus a hexagon....'

It did not work-not yet, but he felt that he was qu'te
close to the secret. 'And now I pressed forward again.
Why look for two-dimensional forms--and, behold dear
reader, now you have my discovery in your hands!...'

The point is this. One ca: construct any number of

regular polygons in a two-dimensional plane; but one

can only construct a limited number of regular solids

in three-dimensional space. These 'perfect solids',

of which all faces are identical, are: (1) the

tetrahedron (pyramid) bounded by four equilateral

triangles; (2) the cube; (3) the octahedron (eight

equilateral triangles); (4) the dodecahedron (twelve y
pentagons) and (5) the icosahedron (twenty equilateral

<P OO

Fig. 19
They were also called the 'Pythagprean' or 'Platonic'
solids. Being perfectly symmetrical, each can be in

_triangles)....

inscnibed into a sphere, so that all of its vertices

(corners) lie on the surface of the sphere. Similarly
each can be circumsernibed around a sphere, so that the
sphere touches every face in its centre. It is a

curious fact, inherent in the nature of three-dimensional
space, that (as Euclid proved) the number of regular
solids 1is limited to these five forms. Whatever

shape yow choose as a face, no other perfectly symmetri-
cal solid can be constructed except these five. Other
combinations just cannot be fitted together....

So there existed only five perfect solids - and five
intervals between the planets! It was impossible to
believe that this should be by chance, and not by

divine arrangement. It provided the complete answer
to the question why there were just six planets 'and




not twenty or a hundred'....

'It is amazing!' Kepler informs his readers, 'although
I had as yet no clear idea of the order in which the
perfect solids had to be arranged, I nevertheless
succeedad...in arranging them so happily, that later on,
when I checked the matter over, I had nothing to alter.

~ .Now I no longer regretted the lost time; I no longer

tired of my work; I shied from no computation, however
difficult. Day and night 1 spent with calculations to
see whether the proposition that I had formulated tallied
with the Copernican orbits or whether my joy would be
carried away by the winds.... Within a few days every-
thing fell into its place. I saw one symmetrical solid
after the other fit in so precisely between the
appropriate orbits, that if a peasant were to ask you
on what kind of hook the heavens are fastened so that
they don't fall down, it will be easy for thee to
answer him. Farewell!'
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APPENDIX 4

Kepler's three laws corcern the general properties of the motion

of the planets in their orbits about the sun. Although these laws appeaf

innocent and simple, Kepler spent twenty-two years of his life arriving at

them and wrote two volumes describing the process of that discoverv and the

implications of the laws. The contribution of these laws to the development

of classical physics was as important as the contrihbution of Einstein's

famous law for mass energy conversion, viz. Eﬂmcz, was to the development

of modern physics. Kepler's statement of the laws was more dramatic than

our concise version given below, but our statement contains the escantial

features of these laws.

Keplern's Laws :

1.

The path of a planet in its orbit about the sun is an ellipse
and not a circle with the sun as one focii.

The motion of each planet may be characterized by noting that
an imaginary line from the sun to the planet traces out equal.

areas in equal times.

~The ratio of the period, T, of the nearly circular orbit of the

planet is related to its average distance, R, from the sun by:

T2 is proportional to R3.
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